Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.

نویسندگان

  • Tarun Jain
  • Ricardo Jose S Guerrero
  • Carlos A Aguilar
  • Rohit Karnik
چکیده

Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support for the membrane contributes capacitive noise and limits integration with microfluidic networks for sample preprocessing. Herein, we demonstrate a technique to directly transfer solid-state nanopores machined in dielectric membranes from a silicon support into a microfluidic network. The resulting microfluidic-addressable nanopores can sense single DNA molecules at high bandwidths and with low noise, owing to significant reductions in membrane capacitance. This strategy will enable large-scale integration of solid-state nanopores with microfluidic upstream and downstream processing and permit new functions with nanopores such as complex manipulations for multidimensional analysis and parallel sensing in two and three-dimensional architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suspended nanoporous membranes as interfaces for neuronal biohybrid systems.

A biohybrid system composed of neuronal cells and silicon-supported nanoporous membranes has been designed to facilitate control of the biochemical environment of neuronal networks with cellular resolution. The membranes may exhibit variable pore sizes and interpore distances and are interfaced to a microfluidic device. Different porosity parameters give rise to changes in the transconductance ...

متن کامل

Chemically modified solid-state nanopores.

Nanopores are extremely sensitive single-molecule sensors. Recently, electron beams have been used to fabricate synthetic nanopores in thin solid-state membranes with subnanometer resolution. Here we report a new class of chemically modified nanopore sensors. We describe two approaches for monolayer coating of nanopores: (1) self-assembly from solution, in which nanopores approximately 10 nm di...

متن کامل

Microfluidic systems with ion-selective membranes.

When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and m...

متن کامل

Investigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application

In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...

متن کامل

Ion Transport across Individual Sub - Continuum Graphene Nanopores : Phenomenology , Theory , and Implications for Industrial Separations

Atomically thin materials, and in particular graphene, provide a new class of solid-state nanopores-apertures that allow for the exchange of matter across thin membranes-with the smallest possible volumes of any ion channel. As the diameter of these nanopores becomes comparable to that of hydrated ions, sub-continuum effects have the potential to enable selective transport similar to that obser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 85 8  شماره 

صفحات  -

تاریخ انتشار 2013